Effectiveness and tolerability of ferric carboxymaltose in the correction of cancer- and chemotherapy-associated anaemia – a multicenter observational study

T. Steinmetz1, B. Tschechne2, G. Virgin3, B. Klement4, B. Rzychon4, M. Franzem5, J. Wamhoff6, H. Tesch7, R. Rohrberg8, N. Marschner9

BACKGROUND

- Iron deficiency (ID) and cancer-related or chemotherapy-induced anaemia are frequent comorbidities in patients with cancer 1-3.
- Supplementation, erythropoiesis-stimulating agents (ESAs), blood transfusions and combinations of these are current therapeutic options for the treatment of anaemia 4-6.
- Functional iron deficiency (FID; i.e. transferrin saturation [TSAT] <20% and normal or elevated serum ferritin) can result in low response to ESAs 7.
- Based on clinical evidence 8-10, current anaemia treatment guidelines recommend iron therapy combined with an ESA in patients with FID, in doing so, guidelines acknowledge that oral iron is less effective than intravenous (I.V.) iron 11.
- Furthermore, guidelines aim to minimise blood transfusions and ESA usage 12-14.
- There is growing evidence that I.V. iron treatment even without an ESA can improve Hb levels and reduce blood transfusion requirements 14-16.
- This 12-week observational study evaluated the effectiveness and tolerability of ferric carboxymaltose (FCM, Vifor Pharma, Switzerland) in routine treatment of unselected anaemic cancer patients with absolute or functional ID.

PATIENTS AND METHODS

- Adult cancer patients assigned to FCM treatment for anaemia were enrolled from December 2008 to July 2010 at 68 haematology/oncology practices in Germany.
- Patients were observed weekly until the end of the study (EOS) at 12-14 weeks.
- FCM was administered without restriction on timing, dosage, use of ESAs or transfusions.
- Patients receiving at least one FCM dose were evaluated for safety. Patients with available baseline Hb and at least one follow-up visit were analysed for effectiveness.
- Data collected within four weeks from a transfusion were censored from analysis.
- Primary effectiveness parameter was the Hb increase from baseline to the last visit.
- Secondary effectiveness parameters included Hb levels at each weekly visit and the proportion of patients receiving blood transfusions after the first treatment with FCM.
- Data are shown as median (Q1, Q3) unless otherwise stated.

RESULTS

- Of 639 registered patients, 619 received at least one FCM dose (safety population) and 420 patients with baseline Hb taken within 7 days prior or 3 days after the first FCM dose were analysed for effectiveness.
- Median age was 67 years [58, 73], 54.8% were female and 61.0% had metastatic disease.
- Median haematological parameters at baseline were Hb 10.0 g/dL (9.1, 10.6), transferrin saturation (TSAT) 12.1% (7.7, 18.7) and serum ferritin 188 ng/mL (32, 509).
- 37.5% of tested patients in the efficacy population had ferritin levels below 100 ng/mL and 76.5% a TSAT less than 20% at baseline.
- Most patients (91.2%) in the efficacy population presented with solid tumours (Fig 1).
- 74.3% were receiving cytotoxic chemotherapy. 17.1% did not receive any cancer therapy (Fig 2). 22.1% were on neoadjuvant therapy, 30.2% on 1-line chemotherapy and 30.0% on 2nd-/3rd-line therapy.

- Median Hb increase was comparable and significant vs. baseline (p≤0.0001) for patients that received FCM as sole anaemia therapy (1.4 g/dL [0.2, 2.3]) and those that received a combination of FCM and an ESA (1.6 g/dL [0.7, 2.4]). Median Hb increase was equal among patients who were censored for transfusions and those who were not (All censored: 1.4 g/dL [0.3, 2.3]; All not censored: 1.4 g/dL [0.2, 2.3]).

- Median Hb levels increased steadily after first FCM administration. From week 5 onwards, comparable Hb levels were reached in patients treated with FCM only and FCM+ESA.
- Median increase in Hb levels was similar in the overall population (1.4 g/dL [0.2, 2.3]) and patients censored for transfusions during the study (1.4 g/dL [0.3, 2.3]).

- The proportion of patients requiring transfusions decreased from 14% during weeks 1-4 after the first FCM-dose to 9% during weeks 5-12 (Tab 2).

TOLERABILITY

- FCM was well tolerated. Possibly or probably drug-related adverse events (AEs), mainly nausea and diarrhoea, were reported for 2.3% (en 14) of patients.
- Three serious AEs comprised one fatal case after a possibly related respiratory insufficiency and two unlikely related events of tachycardia and dyspnoea.

CONCLUSIONS

- FCM significantly increased and stabilised median Hb levels at 11-12 g/dL after week 5 in the routine treatment of anaemic cancer patients.
- The study results suggest a role for I.V. iron alone in the correction of anaemia in cancer patients with absolute or functional iron deficiency.

REFERENCES